Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE
In Mathematics A (4MA1)
Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4MA1_1H_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods mark the one that leads to the answer on the answer line. If there is no answer given then mark the method that gives the lowest mark and award this mark.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from questions 1, 11, 12b, 15 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes	
1	$\text { e.g. } \frac{14}{3} \text { and } \frac{10}{9}$		3	M1	Both fractions expressed as improper fractions
	$\text { e.g. } \frac{14}{3} \times \frac{9}{10}$			M1	or for both fractions expressed as equivalent fractions with denominators that are a common multiple of 3 and 9 eg . $\frac{42}{9} \div \frac{10}{9} \text { or } \frac{126}{27}, \frac{30}{27}$
	e.g. $\frac{14}{3} \times \frac{9}{10}=\frac{126}{30}=\frac{21}{5}=4 \frac{1}{5}$ or $\frac{14}{3} \times \frac{9}{10}=\frac{126}{30}=4 \frac{6}{30}=4 \frac{1}{5}$ or $\frac{14^{7}}{\mathcal{F}^{1}} \times \frac{9^{3}}{1 \theta^{5}}=\frac{21}{5}=4 \frac{1}{5}$ or $\frac{126}{27}, \frac{30}{27}=\frac{126}{30}=\frac{21}{5}=4 \frac{1}{5}$	Shown		A1	Dep on M2 for conclusion to $4 \frac{1}{5}$ from correct working - either sight of the result of the multiplication e.g. $\frac{126}{30}$ must be seen or correct cancelling prior to the multiplication to $\frac{21}{5}$ NB: use of decimals scores no marks
					Total 3 marks

$\mathbf{2}$	(a)	$15 \mathrm{~km} / \mathrm{h}$ or $\frac{25}{6} \mathrm{~m} / \mathrm{sec}$ or $0.25 \mathrm{~km} / \mathrm{min}$ or $\frac{15}{4}$ oe $12 \mathrm{~km} / \mathrm{h}$ or $\frac{10}{3} \mathrm{~m} / \mathrm{sec}$ or $0.2 \mathrm{~km} / \mathrm{min}$ or $\frac{9}{3}$ oe	'before' with reason	1	B1e.g. before as gradient is steeper or before as speed before is 15 km/h speed after is $12 \mathrm{~km} / \mathrm{h}$ or before as she goes over 11 (allow $11-12) \mathrm{km}$ in $3 / 4$ hour but only goes 9 km in $3 / 4$ hour after oe NB: any figures used for the reason must be accurate if they haven't used 'gradient is steeper' oe

3	(a)		e^{4}	1	B1	
	(b)		y^{16}	2	B1	
	(c)	$x^{2}+9 x-2 x-18$		2	M1	for 3 correct terms or 4 correct terms ignoring signs or $x^{2}+7 x+c$ or $. . . .+7 x-18$
			$x^{2}+7 x-18$		A1	
	(d)		$4 c p^{2}\left(4 c^{3}+5 p\right)$	2	B2	if not B2 then award B1 for any correct factorisation with at least 2 factors outside the bracket eg $4 c p\left(4 c^{3} p+5 p^{2}\right), c p^{2}\left(16 c^{3}+20 p\right)$, $2 p\left(8 p c^{4}+10 c p^{2}\right)$ etc or the correct common factor and a 2 term expression with just one error
						Total 6 marks

4	(a)		9, 3, (-1), -3, (-3), -1, (3)	2	B2	If not B 2 then award B1 for at least 2 correct values
	(b)			2	M1	dep on B1 ft from (a) for at least 5 points plotted correctly
			correct graph		A1	for the correct graph (clear intention to go through all the points and which must be curved at the bottom)
						Total 4 marks

5	$\begin{aligned} & 2 x+0.18+2 x+3 x+0.26+x=1 \text { or } \\ & 1-(0.18+0.26)(=0.56) \end{aligned}$		4	M1	
	$x=(1-0.18-0.26) \div(2+2+3+1)(=0.07)$			M1	
	$\begin{aligned} & \text { eg }\left(0.18+4 \times \times^{\prime \prime} 0.07 \text { " }\right) \times 200 \\ & \text { or } 0.46 \times 200 \\ & \text { or } 36+42+14 \text { oe } \end{aligned}$			M1 dep on M2 and probabilities between 0 and 1 or $\frac{92}{200}$, oe with 92 seen	
		92		A1	
				Total 4 marks	

6		$12 \times 8 \times 5(=480)$		3	M 1
		" 480 " $\times 0.7$			M1 Dep on M1
			336	A1	

$\mathbf{7}$	(a)		5700000	1	B1
	(b)		4×10^{-3}	1	B1
	(c)		5000000 or $5 \times$	2	B2
			oe not B2 then award B1 for		
320000 or 3.2×10^{5} oe or					
5×10^{n} oe where $n \neq 6$					

8	$\begin{aligned} & 0.08 \times 170000(=13600) \text { or } 0.92 \times 170000 \\ & (=156400) \end{aligned}$		3	M1	oe eg $170000 \div 12.5$	M2 for $170000 \times$$0.92^{3}$
	e.g. $0.92 \times(0.92 \times$ "156400")				(dep)for a complete method	
		132377		A1	or 132376.96	
					$\begin{aligned} & \hline \text { SCB2 for } 170000 \times 0 \\ & \text { (SCB1 for } 170000 \times 0 \\ & 170000 \times 0.76(=1292 \\ & 170000 \times 1.08(=183 \\ & 170000 \times 1.08^{3}(=214 \\ & 129200 \text { or an answer } \end{aligned}$	121786.(810)) 0 800) or an answer of $4151-214151.1(0))$
						Total 3 mar

9	$0.5 \times 6 \times 6$ (=18)		5	M1	For area of triangle, or may use $\frac{1}{2} \times 6 \times 6 \sqrt{2} \sin 45$ or $\frac{1}{2} \times 6 \sqrt{2} \times 3 \sqrt{2}$ oe
	$\left(d^{2}=\right) 6^{2}+6^{2}(=72) \text { or } \frac{A C}{(\sin 90)}=\frac{6}{\sin 45}$			M1	
	$\begin{aligned} & \sqrt{6^{2}+6^{2}}(=\sqrt{72}=6 \sqrt{2}=8.4(85 \ldots) \text {)r } 8.5) \text { or } \\ & \left.A C=\frac{6(\sin 90)}{\sin 45}=6 \sqrt{2}=8.4(85 \ldots) \text { or } 8.5\right) \text { oe } \end{aligned}$			M1	
	$0.5 \times \pi \times\left(\frac{8.48 . . .}{2}\right)^{2}(=9 \pi$ or $28 . \ldots$.			M1	
		46.3		A1	for 46.2-46.3
					Total 5 marks

10		$(8=) 2 \times 2 \times 2$ or 2^{3} or 2^{3+n}		2	M1For clearly writing 8 as a product of prime factors or as 2^{3}
			$2^{n+3} \times 3 \times 5^{m}$		A1

11	5.5 or 6.5 or 12.5 or 17.5		3	M1	Accept $6.4 \dot{9}$ for 6.5 and $17.4 \dot{9}$ for 17.5
	17.5-5.5			M1	$\begin{aligned} & \text { for UB - LB where } \\ & 15<U B \leq 17.5 \text { and } 5.5 \leq L B<6 \end{aligned}$
		12		A1	dep on M2
					Total 3 marks

13	(a)		$\frac{6}{14}, \frac{8}{14}$	2	B1 for $\frac{6}{14}\left(\frac{3}{7}\right), \frac{8}{14}\left(\frac{4}{7}\right)$ in correct positions. Allow decimals of 2 dp or better $(0.43,0.57)$
			$\frac{3}{10}, \frac{7}{10}, \frac{3}{10}, \frac{7}{10}$		B1oe for $\frac{3}{10}, \frac{7}{10}, \frac{3}{10}, \frac{7}{10}$ in correct positions.
	(b)	$\frac{8}{14} \times \frac{7}{10}$		2	M1 ft from (a)
			$\frac{2}{5}$ oe		A1
	(c)	$\begin{aligned} & \frac{7}{13} \times \frac{6}{9}\left(=\frac{42}{117}=\frac{14}{39}=0.35(897 \ldots)\right) \text { or } \\ & \frac{8}{14} \times \frac{7}{13}\left(=\frac{56}{182} \text { oe }\right) \text { or } \frac{7}{10} \times \frac{6}{9}\left(=\frac{42}{90}\right) \end{aligned}$		3	$\begin{array}{ll} \text { M1 } & \text { ft from (a) } \\ & \left(\frac{7}{13}=0.54 \text { to } 2 \mathrm{dp}\right. \\ & \left.\frac{6}{9}=0.67 \text { to } 2 \mathrm{dp}\right) \end{array}$
		$" \frac{42}{117} " \times " \frac{2}{5} " \text { or }\left(\frac{8}{14} \times \frac{7}{13}\right) \times\left(\frac{7}{10} \times \frac{6}{9}\right)$			M1 ft from (b)
			$\frac{28}{195}$ oe		A1 for $\frac{28}{195}$ oe, e.g. 0.14(3589...) from accurate working
					Total 7 marks

14	(a)		7, 8, 9, 10, 11	2	B2	completely correct. (B1 for 4 or 5 correct and no more than 1 incorrect or for all terms seen correctly placed in a Venn diagram or for a correct description of the numbers in the set but not listed, eg $7 \leq x<$ 12)
	(b)		eg 2, 4, 6	1	B1	for any 3 of 2, 4, 6, 8, 10
						Total 3 marks

15		$\begin{aligned} & x=0.25454 \ldots \\ & 100 x=25.454 \ldots \\ & 10 x=2.5454 \ldots \\ & 1000 x=254.54 \ldots \end{aligned}$		2		For 2 recurring decimals that when subtracted give a whole number or terminating decimal eg 25.2 or 252 etc eg $100 x=25.454 \ldots$ and $x=0.25454 \ldots$ or $1000 x=254.54 \ldots$ and $10 x=2.5454 \ldots$. with intention to subtract. (if recurring dots not shown then showing at least the digits 25454, ie 5sf) or $0.2+0.0 \dot{5} \dot{4}$ and eg $x=0.05454 \ldots, 100 x=5.4545 \ldots$ with intention to subtract.
		$\begin{aligned} & \text { eg } 100 x-x=25.454 \ldots-0.254 \ldots=25.2 \text { and } \\ & \frac{25.2}{99}=\frac{14}{55} \text { or } \\ & 1000 x-10 x=254.545 \ldots-2.545 \ldots=252 \text { and } \\ & \frac{252}{990}=\frac{14}{55} \text { or } \\ & 100 x-x=5.4545 \ldots-0.05454 \ldots=5.4 \text { and } \\ & \frac{5.4}{99}=\frac{54}{990}\left(=\frac{3}{55}\right) \text { and } \frac{2 \times 99+54}{990}=\frac{252}{990}=\frac{14}{55} \\ & \text { or } \frac{5.4}{99}=\frac{54}{990}=\frac{3}{55} \text { and } \frac{11+3}{55}=\frac{14}{55} \end{aligned}$	show			for completion to $\frac{14}{55}$

18	$17.8^{2}+26.3^{2}-2 \times 17.8 \times 26.3 \times \cos 36$		3	M1	
	e.g. 1008.5... $-757 . \ldots$. or 251 (.06...)				for correct order of operations
		15.8		A1	for ans in range 15.8-15.9
					Total 3 marks

19	$\begin{aligned} & 15 \div 20(=0.75) \\ & 48 \div 15(=3.2) \\ & 21 \div 5(=4.2) \\ & 16 \div 10(=1.6) \end{aligned}$	correct histogram	3	B3	For a fully correct histogram [If not B3 then B2 for 3 correct frequency densities (can be implied by heights) or 3 correct bars drawn If not B2 then B1 for 2 correctly calculated frequency densities (can be implied by heights) or 2 correct bars drawn.]
					Total 3 marks

Students can use other methods to gain the correct answer					
20	angle $A B D=71$ or angle $A C D=71$ or using O as centre of circle, angle $A D O=90-71$ (=19)		5	M	clearly labelled or stated
	$\begin{array}{\|l\|} \hline \text { angle } A D B=71 \text { or } \\ \text { angle } A C B=71 \text { or } \\ \text { angle } B A D=19 \times 2(=38) \text { or } \\ \text { reflex angle } B O D=2 \times 142(=284) \\ \hline \end{array}$				dep clearly labelled or stated
	angle $B C D=142$	142		A1	Clearly labelled or stated, from no incorrect working for their method
				B2	dep on A1 for fully correct reasons for each stage of working, repeated if used more than once. eg alternate segment theorem, base angles in an isosceles triangle are equal, angles in a triangle sum to 180°, angle between tangent and radius(diameter) is 90° congruent triangles (equal triangles) oe opposite angles_of a cyclic quadrilateral sum to 180° angles in the same segment angle at the centre is $\underline{2 \times}$ angle at circumference oe equal chords subtend equal angles at the circumference If not B2 then award B1 dep on M1 for any one correct circle theorem reason associated with angle(s) found
					Total 5 marks

21	$h=3 r \text { or } r=\frac{h}{3}$		5		for $h=3 r$ or $r=\frac{h}{3}$ oe stated or used correctly
	$\frac{1}{2} \times \frac{4}{3} \times \pi r^{3}$ oe or $\pi \times r^{2} \times 3 r$ oe				or $\frac{1}{2} \times \frac{4}{3} \pi\left(\frac{h}{3}\right)^{3}$ or $\pi\left(\frac{h}{3}\right)^{2} h$
	$\frac{1}{2} \times \frac{4}{3} \times \pi r^{3}+\pi \times r^{2} \times 3 r=792 \pi \text { oe }$				or $\frac{1}{2} \times \frac{4}{3} \pi\left(\frac{h}{3}\right)^{3}+\pi\left(\frac{h}{3}\right)^{2} h=792 \pi$
	$(r=) 6$ or $(h=) 18$			A1	
		24		A1f	their " 6 " $\times 4$ or " 18 " $\times \frac{4}{3}$ correctly evaluated dep on M3
					Total 5 marks

22	(a)		correct graph (see end of mark scheme) [must go through (60, 2), (150, 0), $(240,-2),(330,0)]$ and not through $(0,0)$	2	B2	if not B2 then award B1 for a graph of the correct shape going through 2 or 3 of the given points or for a clear stretch of SF2 (ie a maximum point on graph at $\left(x_{1}, 2\right)$ and a minimum point at ($x_{2},-2$) or a clear translation of $\binom{-30}{0}$ (ie a point on graph at $(150, y)$ and a point at $(330, y)$)
	(b)(i)		$(x-3)^{2}+1$	2		(B1 for $\left(x-\frac{6}{2}\right)^{2}+n($ where $n \neq 1)$ or for $(x-m)^{2}+1($ where $m \neq 3)$ or for $\begin{aligned} & x^{2}-a x-a x+a^{2}+b \text { with } \\ & \left.2 a=6 \text { or } a^{2}+b=10\right) \end{aligned}$
	(b)(ii)		translation of $\binom{3}{1}$	2	B1	for translation
						For $\binom{3}{1}$ ft from (b)(i) must be column vector
					Total 6 marks	

23	$\left(\frac{10+2}{2}, \frac{7+19}{2}\right)$ or $(6,13)$			M	
	$\frac{19-7}{10-2}\left(=\frac{12}{8}\right)$ oe or 1.5 oe			M	
	$m \times \frac{3}{2}=-1$ oe or $m=-\frac{2}{3}$			M	for use of $m_{1} m_{2}=-1$
" 13 " $=$ " $-\frac{2}{3} " \times " 6$ " $+c$ or $c=17$ oe or $y-" 13 "="-\frac{2}{3} "(x-" 6 ")$				M	Or for $y=-\frac{2}{3} x+17$ [NB: " 13 ", " 6 " and " $-\frac{2}{3}$ " must come from correct working]
		$3 y+2 x=51$	5	A1	for $3 y+2 x=51$ or $3 y=-2 x+51$ etc but must be integer coefficients

24	$(v=) 3 t^{2}-6 \times 2 t+5(+0)$		4	M1	for differentiating at least 2 terms correctly
	$(a=) 3 \times 2 t-12$			M1	dep ft
	$6 t-12=3$				dep on at least M1 for equating their acceleration in terms of t to 3
		2.5 oe		A1	
					Total 4 marks

Q19

Frequency density

q22

